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SUMMARY

Introduction
Our understanding of functional brain organization is due to advanc-
es in neuroimaging technologies and to an intensive clinical research. 
Recently, cognitive science (cognitive neuroscience), combined with 
advances in technology, have changed our understanding of brain-
behavior relationship. This symbiotic relationship has allowed a better 
characterization of the lesion site in patients with brain disorders and 
patterns of activation in healthy subjects.

Objective
In this article we discuss the contribution of the left hemisphere and 
right hemisphere involvement in the regulation of motor behavior; 
this will allow us to better understand the lateralization of motor 
functions.

Development
The results support the view of left-hemisphere dominance for language 
and motor control, and right hemisphere dominance for spatial func-
tions and attention. Specialized areas are probably pre-determined 
and certain functions are lateralized to one or other hemisphere due to 
the efficient organization and information processing in the brain.

Conclusion
In the studies reviewed, specific functions for each hemisphere were 
observed, suggesting the existence of a complex organization that re-
cruits several areas of the Nervous System for adequate performance 
of a task.

Key Words: Motor behavior, functional specialization, functional 
integration, sensorimotor integration, cognitive neuroscience.

RESUMEN

Introducción
Nuestra comprensión de la organización funcional del cerebro se 
debe a los avances en las técnicas de neuroimagen y a una intensa 
investigación clínica. Recientemente, la ciencia cognitiva (neurocien-
cia cognitiva) en combinación con los avances tecnológicos han cam-
biado nuestra comprensión sobre la relación cerebro-conducta. Esta 
relación simbiótica ha permitido una mejor caracterización del sitio 
de la lesión en pacientes con trastornos cerebrales y de los patrones 
de activación en sujetos sanos.

Objetivo
En el presente artículo se discute la contribución del hemisferio iz-
quierdo y la participación del hemisferio derecho en la regulación de 
la conducta motora; esto nos permitirá comprender mejor la laterali-
zación de las funciones motoras.

Desarrollo
Los resultados apoyan la visión de un predominio del hemisferio iz-
quierdo para el lenguaje y el control motor, y un predominio del hemis-
ferio derecho para las funciones espaciales y la atención. Las áreas es-
pecializadas son probablemente predeterminadas y ciertas funciones 
están lateralizadas a uno u otro hemisferio, esto debido a la eficiente 
organización y procesamiento de la información en el cerebro.

Conclusión
En los estudios revisados, se observaron funciones específicas para 
cada hemisferio, lo que sugiere la existencia de una compleja orga-
nización que recluta a varias áreas del Sistema Nervioso para el 
adecuado desempeño de una tarea.

Palabras clave: Conducta motora, especialización funcional, inte-
gración funcional, integración sensitivomotora, neurociencia cognitiva.
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INTRODUCTION

Progress in the understanding of functional brain organiza-
tion is due to advances in neuroimaging technologies and 
to an intensive clinical research. Recently, cognitive science 
—specifically cognitive neuroscience— combined with nu-
merous advances, has made a great impact on our under-
standing of brain-behavior relationships. This symbiotic 
relationship between neuropsychology and neuroscience 
continues and has been achieved by developing the neuro-
imaging methods. This has allowed a better characteriza-
tion of the lesion site in patients with brain disorders and 
patterns of activation in healthy subjects. This symbiosis is 
especially attractive when combined with cognitive para-
digms, with the most advanced neuroimaging methods, in 
order to address issues related to cognition and its relation 
to neuroanatomical aspects.1

Its complexity makes the brain looks like a large open 
system integrating many different and complex systems. 
Modern neuroimaging techniques allow us to observe live 
brain function in real time during the performance of cogni-
tive or behavioral tasks. This leads to a more current and 
integrated view of the brain, where multiple areas, either 
simple or complex, are activated at the same time.2 Based 
on this cutting-edge vision, researchers have struggled to 
support the principles governing cortical involvement from 
the perspective of functionality.3-6 Thus, two basic principles 
have been proposed: functional specialization, which refers 
to the idea that certain regions of the brain play specialized 
roles; and functional integration, which implies that specific 
tasks require extensive interactions among specialized brain 
regions.7

Traditionally, cognitive neuroscience depends on ani-
mal studies information and on research in patients with 
focal brain lesions in order to determine the role of spe-
cific areas. The first research method has the disadvantage 
of generalizing results due to the different types of species 
used in the studies and also to the fact that many higher or-
der cognitive functions are inherent in every human being. 
The second research method has the problem that the lesion 
is not usually focal, and what is being investigated is the 
rest of the brain function after a long-term reorganization 
with a lack of contribution of the injured area.1 Regarding 
studies of cortical lesions, the localizationist doctrine effec-
tively contributed on the aspects of functional differentia-
tion of the cerebral hemispheres. Since Paul Broca and Carl 
Wernicke’s studies it was observed that language areas are 
altered with the existence of a specific lesion in the left hemi-
sphere. Accordingly, John Hughlings Jackson led the dis-
cussion through his experiments for a possible dominance 
of the right hemisphere due to its importance in visuospatial 
functions.8 By contrast, Liepmann noted a significant inter-
hemispheric asymmetry in relation to motor skills, with the 
argument that the left hemisphere plays a predominant role 

in motion control, rectifying that this hemisphere contains 
“motion formulas” aimed at both sides of the body.9

Based on these discussions, now neurology has been 
focused on the specialized functions of the left hemisphere 
that are essential for language and motor skills. Studies 
show that this lateralization is well established for right-
handed individuals10-12 and that this could be programmed 
during development13,14 after the onset of the perceptual-
motor specializations that are essential in the initial period 
of pregnancy.15-17 However, this issue still generates discus-
sions.18,19 A possible hypothesis is that functional connec-
tions between cortical areas of the hand and tongue20,21 may 
have been essential for the evolution of hand gestures lan-
guage rather than vocal words,22 a fact that is supported by 
the use of gestures that usually come with the expression 
of speech.23 In this context, some studies have found that 
Broca’s area is associated with different motor functions and 
not only with language but also with planning, recognition 
and imitation of gestures24-26 as well as the syntactic opera-
tions necessary for the hierarchical representation of the se-
quential behavior.27,28

The aim of this article is to discuss the contributions 
of the left hemisphere in the regulation of motor behavior 
and participation of the right hemisphere in such process to 
better understand their involvement in the lateralization of 
motor functions. Therefore, it is proposed that the lateraliza-
tion of motor functions is a versatile process in which the 
functional involvement of both hemispheres is not fixed but 
flexible, and guided by several fundamental factors.

CONTRIBUTIONS OF THE LEFT AND RIGHT
HEMISPHERES IN THE REGULATION

OF THE COGNITIVE ASPECTS
OF MOTOR BEHAVIOR

Experts in neurology and neuropsychology typically fo-
cus their attention on contralesional motor deficits but ip-
silesional deficits are also present and are considered to be 
associated with the cognitive demands of movements (e.g., 
planning, development and selection of motor programs). 
These deficiencies have functional implications, especially 
in patients with aftereffects of cerebrovascular accident 
(CVA) who use their ipsilesional limbs to compensate the 
hemiplegia. Previous studies have highlighted the impor-
tance of the left hemisphere compared to the right one to 
control the ipsilesional movement, for example, by the limb 
of a patient with apraxia29 and sequence of movements.30,31 
Some tasks are more controlled by the right hemisphere or 
need both hemispheres;32 but the point of discussion is the 
role of the left hemisphere in complex movements, since it is 
dominant in controlling many actions, such as language.

Hemispheric specialization is closely linked to hemi-
spheric dominance and brain functions. The predominance 
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of the left hemisphere for motor skills has been attributed to 
anatomical and functional asymmetries of the primary mo-
tor cortex (M1) and downstream pathways33,34 as the second-
ary motor and association areas.35 The hand contralateral 
map in right-handed subjects provides strong evidence of 
an asymmetry in the area M1,36-39 which is probably related 
to the changes experienced in early development. This fact 
was observed in the performance of tasks made with the 
dominant hand and non-dominant hand in right-handed 
subjects, which results in a greater spatial dispersion in the 
motor areas of the left hemisphere than in the right-hand 
areas.40 Functional magnetic resonance imaging (fMRI)41 
and transcranial magnetic stimulation (TMS)42 studies have 
shown the above aspects.

The asymmetry of motor and association areas reflects 
a secondary application of certain functions of specialized 
brain regions. This was observed in studies with patients 
who suffered lesions in the left hemisphere. Individuals 
showed a decrease in the performance of skillful actions 
with both hands. The right hemisphere lesions cause re-
stricted deficits to the contralateral hand.43-45 Haaland et al.36 
showed, in healthy people, a greater involvement of the pre-
motor areas and of left parietal hemisphere compared to the 
right hemisphere in areas of high command related to the 
complexity of the task. According to these findings, several 
hypotheses have been offered as a basis for this asymmetric 
functional model of the left hemisphere such as the behav-
ior of sequential actions, the organization and selection of 
movements,46,47 bimanual coordination,48,49 perception and 
interpretation of actions,50 and moreover, the movements in 
sequence51 that strengthen the role of the left hemisphere in 
speech and writing.52,53

But the real role of the right hemisphere in the regula-
tion of motor behavior is still not well defined. The evidence 
is aimed at a small representation on the area M1 of the 
right hemisphere compared to the left one in right-handed 
people, related to a decrease of the skill of the non-dominant 
hand.54

In association areas, the specialized functions related 
to planning are not well developed,55 probably due to the 
strong demand for “clues” to select a specific external rep-
resentation that involves the motor processing of the new 
exploration of situations.56

The issue of processing the exploration of new situa-
tions is consistent with the theory that the left hemisphere 
acts on aspects of movement in open circuit (based on well-
established motor programs), while the right hemisphere is 
crucial to all aspects of movement in closed circuit (depend-
ing on the sensory feedback).38 However, Haaland et al.37 
study provides no evidence that this dichotomy is related 
to hemispheric asymmetry. On the other hand, it has been 
proposed that the left hemisphere controls the trajectory of 
the limb, while the right hemisphere regulates the position 
and posture of the limb used in the task.57 This premise is 

consistent with studies made in patients who showed a dif-
ferent behavior in cases of lesions to the left and right hemi-
spheres, in the beginning and at the end of the movement 
with the addressed target.58

Therefore, so far the more likely is that the left-hemi-
sphere specialization is limited by the specifications of the 
dynamic tasks’ feedback, while the right-hemisphere spe-
cialization includes sensory mechanisms that control the 
final positioning of the limb.59

However, some authors state that the right hemisphere 
is in charge of functions such as spatial memory, learning 
and orientation,57 which suggests that its prevalence is due 
to the storage of global features, while the left-hemisphere 
specialization is made by the specific processing features.60 
Thus, the specialization of the right hemisphere in spatial 
functions may be due to the involvement of spatial atten-
tion control in left and right fields of vision61 or to a supervi-
sion function that is evident especially in conflict situations62 
among the intention of the movement, proprioception and 
visual feedback.63

THE INTERACTION BETWEEN
THE FACTORS RELATED TO THE TASK

AND THE EXECUTOR

Understanding the function of the Central Nervous System 
(CNS) regarding the regulation of movement is essential 
in several areas of research. Considering the foregoing, we 
will discuss that participation of each cerebral hemisphere 
in motion controlling depends mainly on aspects related to 
the task and the executor. Therefore, we should point out 
the type and complexity of the movement, the skill level of 
the executor, whether the CNS is damaged or not, and the 
focus of attention of the executor, as these factors influence 
how hemispheres behave in the regulation of movement.

Factors Related to the Task

The process related to the type of movement has an impor-
tant role in the regulation mechanisms of motor behavior. In 
particular, sequential representations and their characteris-
tics are associated with the left hemisphere, regardless of the 
hand used for the task.36

Thus, the left hemisphere may be involved specifi-
cally in the planning of sequential acts resulting in the re-
sponse selection, preparation and/or recovery.36,64 In order 
to achieve specific goals with a purpose, it is proposed that 
each hemisphere contributes differently in the specific con-
trol of trajectory and final position.59,65 This distinction is 
due to the contribution of the left hemisphere in the plan-
ning of the dynamics of the limbs, while the right one is es-
sential to specify the final position of the grasping move-
ments through the sensory regulation. The contribution of 
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each hemisphere is also modulated by the complexity of the 
movement. While a simple movement, like bending a finger, 
is organized by a local neuronal network. The more com-
plex actions, such as demands related to a sequence of finger 
movements, require the distributed participation of neural 
networks, often bilaterally.36,64 In this sense, the recruitment 
of both hemispheres seems to be affected by the increased 
attention or the executive control parameters, or by the use 
of operations that specialize in each hemisphere. Therefore, 
it is common knowledge that the pathways between hemi-
spheres take into account the coupling or decoupling of 
relevant information.66 Actually, this input occurs between 
both hemispheres, as shown in the learning transfer studies 
that investigate the transmission of information when a spe-
cific task is performed with one hand only, since, generally, 
the performance advantages are found both in the trained 
and untrained hand.67

Factors Related to the Executor

The process related to the executor has great importance in 
the regulation of motor behavior. According to these prin-
ciples, the experiment of Goldberg et al.68 proposed that the 
right-hemisphere processing is driven by the external envi-
ronment, while the left-hemisphere processing is guided by 
internal representations.37,69 This is consistent with the ob-
servations made in studies where patients with lesions in 
the right parietal cortex showed spatial neglect. They have 
seen a severe change of scanning movements to the right 
side, which was attenuated when movements were directed 
toward a target.70 It is suggested that both types of action re-
quire different information input or support processes with 
a characteristic contribution of both hemispheres. These 
functional differences between hemispheres support a shift 
from right to left regarding the hemispheric importance, 
such as the development of skills. In fact, this development 
is often associated with a partial transition in the genera-
tion of external-to-internal movement control. This fact oc-
curs, for example, when learning a difficult bimanual task,6 
where eventually a reduced activation in the right hemi-
sphere takes place, while activation of the left hemisphere 
becomes more imminent. Since the reduced activation in 
the right hemisphere is associated with a lower demand for 
the spatial characteristics of motion tracking, the increase of 
participation and representation is consolidated.67,70

The CNS has operational changes due to certain neural 
patterns. An example of this occurs after a lesion, particu-
larly in cortical areas associated with the bilateral control 
of a given function as the pre-motor cortex that can take on 
more responsibilities in the motor processing, in addition to 
its crucial role in the functional recovery.58,71

This implies that both hemispheres are equipped with 
functional abilities that they can perform under specific con-
ditions and also this supports the idea that the participation 

of certain neural networks for the regulation of motor be-
havior is flexible, although there is evidence that the motor 
deficit differs as whether lesions are in the left or right hemi-
sphere.72 This issue requires a more detailed assessment of 
what “to one side” and “the extent of the lesion” mean, as 
well as the task and the laterality limitations.

Finally, attention may modulate the involvement of 
both hemispheres.73 In particular, changes in spatial atten-
tion between global and local levels of representation rely 
on processes related to the left and right hemispheres, re-
spectively. Furthermore, these changes also depend on the 
relevant demands and not on the voluntary movement, as 
the attention aimed at motion improves the selection of rep-
resentations. These findings show that the demands of the 
executor’s tasks and characteristics are factors that influence 
on the regulation of motor behavior and, therefore, may 
promote hemispheric asymmetries and inter-hemispheric 
interactions. Such facts show that a dynamic balance be-
tween the existing restrictions induces to certain operation 
modes.6 For example, one can quote the general orienta-
tion that is particularly relevant for new and unexplored 
actions most associated with the right hemisphere. On the 
other hand, it bears mentioning the treatments related to the 
representations that occur due to an action planning-based 
experience, most of the treatments in connection with the 
left hemisphere. These findings support the functional con-
tribution that both hemispheres are flexible. Such flexibility 
causes an adapted and specialized motor behavior. There-
fore, observation of motor tasks —i.e. the sequential move-
ments of the fingers— is widely used in various types of 
experiments allowing to obtain results in favor of separate 
processes (mainly in the left hemisphere).1,6

Sensorimotor integration
and information processing

The sensorimotor integration may be defined as a process 
whereby the sensory stimuli are converted into motor com-
mands, sensory information is integrated by the CNS and is 
used for executing motor programs.56 In this case, the CNS 
processes information from multiple sensory channels and 
adapts to the environment that allows the execution of spe-
cific tasks and of movements with focused objectives.74,75 
Thus, performing a movement involves integration among 
the different senses, especially sight, hearing, somesthesia, 
etc. In recent decades there have been several experiments 
in order to clarify the brain processes and areas involved 
in the integration of sensory information and execution of 
the motor gesture. Werhahn et al.76 found, through the use 
of TMS, that when the upper contralateral limb of subjects 
was anesthetized, the ipsilateral muscles had an increase in 
the motor evoked potentials (MEPs). Moreover, it was ob-
served that there was a reduction in the excitability of the 
contralateral hemisphere motor cortex of the anesthetized 
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limb against the excitability of the motor cortex of the hemi-
sphere related to the unanesthetized limb.

According to these principles, if certain functions are 
lateralized to both hemispheres, the efficient processing of 
information is essential to the representation of such func-
tions. Many of these interactions occur through the corpus 
callosum considering pre-motor information transfer re-
lated to care, feedback and errors.77 This interhemispheric 
communication involves both functional inhibition and 
facilitation. Although these inhibitory interactions are es-
sential in the preparation of unilateral movements, they 
are responsible for neutralizing the production of mirrored 
movements,49,78 i.e., involuntary movements of the contra-
lateral hand, which conducts voluntary actions. From the 
lateralization of motor behavior point of view, there is evi-
dence of many inhibitory circuits between the motor cortex 
of the left and right hemisphere in right-handed subjects.79 
Such functional distinction could contribute to hemispheric 
differences in the regulation of motor behavior, probably 
from childhood, during certain processes that assume an 
asymmetric inhibitory behavior.80

Facilitating the transfer of information between the 
hemispheres is essential when their processing is necessary 
for a satisfactory performance in the task. In the context of 
the regulation of motor behavior, the corpus callosum and 
its information exchange mechanism have been viewed with 
special interest in the coordination of bimanual tasks.81

As demonstrated so far, the level of interhemispheric 
communication is related to the complexity of the task3,6 and 
is necessary for the learning of new motor patterns.3,5,6

Thus, the interactions of the corpus callosum provide a 
link to the specification of high level motor parameters (such 
as the speed with which the limb involved in the movement 
acts) or the selection of a response82,83 and, probably consti-
tute a physiological basis neural84 for sharing information 
that is evident when participating in bimanual tasks with 
different patterns movimiento.85 In summary, this adaptive 
motor behavior depends on inhibitory processes that can 
help you explore the benefits associated with the transfor-
mation of specialization hemispheric processes that enable 
and facilitate the integration of information in both hemi-
spheres. This implies that the allocation of motor behavior 
processing resources is a dynamic process by which the seg-
regation and integration of these functions occur in a flex-
ible manner.

However, our question is: How the brain organizes in-
formation from different specialized regions, since each can 
process information in different ways? To better understand 
this, it is important to consider how the processing of in-
formation is coordinated interhemispherically. A possible 
mechanism of interactions among large-scale regions is the 
temporary creation of dynamic connections based on the 
timing of neural activity.86-88 Thus, the coherence function 
is regarded as relevant by several electrophysiological stud-

ies such as electroencephalography, magnetoencephalogra-
phy and local field potentials.89-91 Particularly, coherence is a 
means for capturing neuronal communication through vari-
ous sectors of the cerebral cortex encoding different infor-
mation that may be related to different frequency bands. For 
example, the beta frequency band (~ 14-30 Hz) is related to 
the synchronized activity observed in sensorimotor areas.92

Thus, the dynamic organization of neuronal activity in 
the frequency domain may provide a means of data process-
ing given the task demands such as the close relationship 
between changes in corticocortical coherence and behavior-
al outcomes, which supports this point of view.93 Based on 
these principles, the study of Andrew et al.94 found that the 
initial increase in coherence may be a reflection of changes 
in interhemispheric communication that are specifically 
related to bimanual learning and these can be transmitted 
through the corpus callosum. These results may help ex-
plaining some neurophysiological data of clinical observa-
tion in patients with lesions of the corpus callosum that may 
show the deficit outcome in the acquisition of new bimanual 
tasks, but not necessarily in the performance of bimanual 
activities previously learned.

This dynamic organization also suggests that the ac-
tivity of various harmonized brain areas represents a basic 
mode of communication with different frequencies that is 
based on the formation of neural networks, which translates 
the transformation output in a more efficient behavior. As to 
the evidence presented in the previous topics, it is suggested 
that with the development of skills, motor representations, 
such as those established for the left hemisphere, can sup-
port more effectively the information processing within 
distinct brain regions. An example is that, during the acqui-
sition of a new bimanual task, it has been shown that an 
initial profile of associations between corticocortical areas is 
gradually adjusted as the routine becomes a stable and opti-
mized-behavior performance5,93,94 until ultimately results in 
a functional pattern that is mostly orchestrated by the left 
hemisphere during the performance of learned bimanual 
tasks.3,5,6

IS THE LATERALIZATION
OF MOTOR FUNCTIONS

REALLY A DYNAMIC PROCESS?

The functional involvement of both the left and right hemi-
sphere in the regulation of motor behavior seems not fixed, 
but rather a dynamic process. Within this context, this sec-
tion addresses a new perspective on the dynamics of this 
process, also arguing that the lateralization of motor func-
tion is characterized by different communication channels 
and intra-and interhemispheric dynamics. Accordingly, 
neuroimaging and clinical studies with patients help iden-
tifying critical neuronal areas and systems for cognitive 
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processes in particular.95 However, studies in patients with 
brain lesion are limited by the inability to control the loca-
tion of the lesion, the size and the trend to be focused on 
the importance of a single space instead of a number of ar-
eas that may be critical and may form a neural circuitry that 
controls a complex function.

In this regard, an important and interesting question is 
whether two or more areas can control different cognitive 
mechanisms that contribute to the execution of a complex 
task. In short, if a lesion in the region or in regions A and B 
causes deficits in a task A’, then the area or areas A and B 
must be activated when a healthy individual performs task 
A’, as a lesion in the region or regions A and B causes defi-
cits in task A’, but not in task B’, then the area A or A and 
B should be the activated areas when a healthy person per-
forms task A’, but not when performing task B’. This was ob-
served in the study of Haaland et al.37 when they investigated 
motion sequences in healthy subjects. By means of functional 
magnetic resonance imaging (fMRI), the it was verified that 
left frontal and parietal regions are activated when healthy 
subjects perform the complex motion sequence, but not with 
the simple movements. Moreover, it was observed that com-
plex sequences are organized, causing great activation in the 
inferior parietal region, while the identification or selection 
of the effector mechanism appropriate for the sequence pro-
duces activation in the superior parietal region.32

Therefore, studies show that the hemispheric asymme-
tries and optimal balance between the hemispheres could be 
useful in understanding the pathologies and diseases like au-
tism and schizophrenia, in which modulations can be partly 
seen as a hemispheric specialization atypical or incompatible 
to the integration among dysfunctional neural systems; for 
example, the dysfunction of neurons in the mirror circuit.96 
The regulation of inter-hemispheric information is possibly 
executed and operated on several levels. The first level (short 
term) is influenced, for example, by factors such as attention 
and context. The second level (medium term) is affected by 
factors such as learning and functional recovery. Finally, the 
third level (long term) is formed by the development, aging, 
high level of skills and chronic disease. Therefore, this view 
is opposed to the traditional point of view that lateralization 
of motor functions is considered as a static process.

CONCLUSION

The findings described in the bibliography show a great in-
terest in studying the phenomenon of regulation of motor 
behavior, particularly with regard to the lateralization of mo-
tor functions.97 Traditionally, researchers have been investi-
gating the dominance of the left hemisphere in language and 
motion control, while a domain of the right hemisphere has 
been investigated regarding space and attention representa-
tions. Although the specialized areas are probably prede-

termined, (SIC) through a combination of interactions that 
a behavior is coherently achieved.98 In this sense, a strong 
pattern of connections in parallel to a greater reliance on 
the left-hemisphere representations provides the basis for a 
more refined motor repertoire, and specialization of the right 
hemisphere also appears to contribute to a skilled behavior.

Moreover, it is through an active interaction of the in-
formation processing —especially by the corpus callosum— 
that the transfer of information takes place in processes such 
as sensorimotor integration, decision making and motor 
preparation.99 As seen in the above issues, this process does 
not occur in a fixed manner, but through dynamics driven 
by different characteristics of the task and the executor, thus 
forming the motor behavior. Thus, the pattern of hemispher-
ic asymmetry that is the basis of the organization of motor 
activity is a multifaceted and more complex pattern than a 
simple dichotomy of functions. So, through neuroimaging 
studies, several data were observed in patients with brain 
lesions associating the deficits observed in the performance 
of tasks with brain lesions (i.e. the hemisphere), which shows 
that it is not possible to interrupt selectively the specific cog-
nitivemotor functions, causing important discussions of how 
the brain represents and regulates motor behavior.

Within this context, an important issue to explore is 
how each hemisphere contributes to the characteristics of 
the task and the executor, which allows the opportunity to 
observe and better understand the nature of the interhemi-
spheric process. These opinions are not only crucial for theo-
ries of motion control, but also for advanced rehabilitation 
interventions in an attempt to restore the motor behavior of 
patients suffering from CNS lesions.
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