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ABSTRACT

Introduction
New therapeutic strategies against cocaine overdose toxicity have 
been developed. These new approaches are based on the design and 
synthesis of proteins involved in the destruction of cocaine before it 
has a chance to penetrate nerve tissue.

Objective
To review the progress in the effect of the increase in the catalytic 
activity of BChE and hCE enzymes produced for the treatment of pa-
tients in cocaine overdose toxicity conditions in order to determine the 
advantages and disadvantages of its use. Its potential future use in 
patients channeled by a cocaine overdose is also explored.

Method
A bibliographic search was conducted using PubMed; descriptors 
were “cocaine”, “hydrolase”, “esterase” and “butyrylcholinesterase”. 
220 papers were obtained and 126 papers were used for these re-
view.

Results
The BChE, COCH and Coce bacterial enzymes significantly decrease 
the levels of cocaine in blood and brain and thereby attenuate the 
effects of a cocaine overdose.

Discussion and conclusion
The results obtained in animal models suggest the potential therapeu-
tic use of these enzymes in humans to rapidly inactivate cocaine and 
develop treatments to stop deaths associated with cocaine overdose 
intoxication. These enzymatic approaches offer a novel therapeutic 
application to treat cocaine overdose.

Key words: Addiction, cocaine, enzymes, and pharmacotherapy.

RESUMEN

Introducción
Se han desarrollado nuevas estrategias terapéuticas contra la toxi-
cidad por sobredosis de cocaína basadas en el aumento en la ac-
tividad catalítica de enzimas que participan en la destrucción de su 
molécula, antes de que tenga la oportunidad de penetrar el tejido 
nervioso.

Objetivo
Describir los avances en el efecto del aumento en la actividad catalíti-
ca de las enzimas BChE y las hCE, producidas para el tratamiento de 
pacientes en condiciones de toxicidad por sobredosis de cocaína, así 
como mencionar sus ventajas y desventajas y su potencial uso futuro 
en pacientes internados por una sobredosis de cocaína.

Método
Se realizó una búsqueda bibliográfica por medio del PubMed, usan-
do como descriptores las palabras “Cocaine”, “hydrolase”, “este-
rase” y “butyrylcholinesterase”. Se obtuvieron 220 artículos de los 
cuales se usaron 126 para esta revisión.

Resultados
Las enzimas BChE, COCH y CoCe bacteriana disminuyeron significa-
tivamente los niveles de cocaína en la sangre y el cerebro y con ello 
atenuaron los efectos de una sobredosis de cocaína.

Discusión y conclusión
Los resultados obtenidos en modelos animales sugieren el potencial 
terapéutico del uso de estas enzimas en humanos, para inactivar 
rápidamente a la cocaína y desarrollar tratamientos para evitar las 
muertes asociadas con la intoxicación por sobredosis.
Estas metodologías enzimáticas ofrecen una aplicación terapéutica 
novedosa para el tratamiento de la sobredosis.

Palabras clave: Adicciones, cocaína, enzimas, terapia farmaco-
lógica.
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INTRODUCTION

Pharmacopeia historically used to attenuate and/or abolish 
dependency on illegal drugs of abuse with high addictive 
potential such as cocaine have shown limited therapeutic 
efficacy in both the short and long term.1,2 Because of this, 
for more than a decade various researchers have been de-
veloping new therapeutic strategies against addictive drugs 
such as cocaine.3,4

Some research groups have developed pharmacologi-
cal therapies through the use of new drugs,5,6 others have 
validated immunotherapy methods based on active and 
passive vaccination procedures,7,8 and still others have ex-
plored the use of proteins that involve destroying cocaine 
molecules before they have the chance to pass through the 
blood-brain barrier and penetrate the nervous tissue (figure 
1-B), such as the increase in catalytic activity of enzymes 
such as butyrylcholinesterase (BChE)9-11 and hepatic carbox-
ylesterases (hCE-1 and hCE-2).

Various epidemiological studies have reported that a 
high percentage of deaths associated with cocaine abuse are 
generally related to intoxication by overdose, primarily due 
to a lack of effective therapy.12 For several years, various re-
search groups have carried out studies aimed at developing 
and validating certain therapeutic strategies, with relative 

success. As mentioned previously, one of these strategies 
has been to increase the catalytic activity of enzymes which 
metabolize the cocaine molecule. Various studies have been 
reported which describe how the activity of these enzymes 
has been maximized through molecular biology techniques; 
other studies have described the effect of treatment with 
these enzymes on rodents and humans. However, there has 
not been a review that describes the benefits, advantages, 
disadvantages, and potential future uses of an increased 
catalytic activity of the enzymes which metabolize cocaine, 
BChE, and hCs. The aim of this review was to analyze the 
scientific advances related to an increase in the catalytic ac-
tivity of the BChE and hCE enzymes, with the aim of de-
scribing their main biological effects and possible future use 
in treating patients in conditions of toxicity due to cocaine 
overdose.

METHOD

A bibliographic search was carried out using the PubMed 
search engine with the following search terms: Cocaine, bu-
tyrylcholinesterase, hydrolase, and esterase. The search was 
carried out covering a period from January 1970 through 
December 2015. The algorithm for the search was: (“co-
caine”[MeSH Terms] OR “cocaine”[All Fields]) AND (“hy-
drolases”[MeSH Terms] OR “hydrolases”[All Fields] OR 
“hydrolase”[All Fields]) AND (“esterases”[MeSH Terms] 
OR “esterases”[All Fields] OR “esterase”[All Fields]) AND 
(“cholinesterases”[MeSH Terms] OR “cholinesterases”[All 
Fields] OR “butyrylcholinesterase”[All Fields] OR “butyryl-
cholinesterase”[MeSH Terms]).

The inclusion criteria were the following: 1) Studies 
published in indexed international publications, 2) basic, 
preclinical, clinical, and review research articles that 3) 
described the structure, biochemistry, and kinetics of the 
BChE and hCE enzymes, as well as the characterization of 
the biological-therapeutic effect and biological safety 4) in 
animals (rodents, rabbits, and primates), and human adults, 
5) studies that were carried out in the U.S., Canada, and the 
European Community, and 6) were published in English, 
French, or Spanish.

Exclusion criteria were the following: articles which 
were 1) editorials, expert opinions, or communications to 
conferences, 2) articles that did not include information rel-
evant to the aim of the study in their content, 3) content that 
was repeated in the content of another article.

An analysis of the results indicated that the bibliograph-
ical search gleaned a total of 220 articles, 126 of which were 
considered for inclusion in this review. Of these 126, 97 were 
research articles, nine were clinical research, one was a me-
ta-analysis, and 19 were review articles (figure 2).

Figure 1. A) Cocaine rapidly moves into the blood vessels, crosses 
the blood-brain barrier, and reaches its target site within the brain. 
Enzymes which hydrolyze cocaine (BChE, CocE) are located within 
the blood vessels, but they are few, and their hydrolytic capacity is li-
mited, so they are not very efficient. (B) When pure or genetically-mo-
dified enzymes are administered (with increased hydrolysis capacity 
and half-life) they rapidly capture cocaine within the blood vessels, 
hydrolyze it into its inactive metabolites, and impede its reinforcing 
or toxic effects.
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RESULTS

Butyrylcholinesterase

Once ingested, cocaine is almost totally metabolized. The 
main route of transformation is enzymatic hydrolysis, and 
plasmatic (BChE) and hepatic (hCE-1) esterases are the main 
enzymes responsible for forming its metabolites: ecgonine 
methyl ester, ecgonine, and benzoylecgonine (figure 1A).

BChE is the main enzyme that metabolizes cocaine in 
plasma in both humans and other species.13-16

The half-life of BChE in animal plasma is approximate-
ly 21.6 hours17-19 and it quickly metabolizes the cocaine mol-
ecule20-23 into the metabolite ecgonine methyl ester. Hepatic 
enzymes transform cocaine into the metabolites norcocaine 
and benzoylecgonine.20,24-28 This change in the metabolic 
profile of cocaine has important physiological implications. 
Some studies have shown that benzoylecgonine is a po-
tent vaso-constrictor29,30 and causes convulsive crises,31 and 
norcocaine is a highly hepatotoxic metabolite and powerful 
local anasthetic.32,33 Conversely, methylecgonine ester does 
not generate any adverse physiological effects and is quick-
ly eliminated by the kidneys, due to which the increase in 
concentration of this metabolite does not cause toxic effects 
in the subject.34

A variety of clinical evidence suggests that BChE en-
dogen activity is inversely correlated with the severity of 
toxicity that cocaine can cause in humans.35,36 Normal levels 

of BChE vary between individuals and are dependent on 
age, state of health, exposure to environmental toxins, and 
genetic factors.37-39

Some clinical reports indicate that individuals who 
suffer severe medical problems after using cocaine tend to 
show less activity in plasmatic BChE than those who expe-
rience less severe problems.40-42 Furthermore, some genet-
ic studies have reported that in extreme cases of cocaine 
intoxication, homozygous patients can show a “silent” 
variant of BChE, which does not express detectable cat-
alytic activity,43,44 low levels of BChE expression, or even 
defective or “atypical” variants of the enzyme. These pa-
tients experience prolonged responses to cocaine. In vitro 
studies demonstrated that BChE which comes from serums 
in atypical patients showed a 50% reduction in capacity to 
hydrolyze cocaine in plasma,45,46 which upholds the import-
ant role played by BChE in the serum of subjects dependent 
on the drug.

Some pioneering studies have reported that patients 
dependent on cocaine who have received purified human 
BChE (obtained from donor serum) have not had adverse 
clinical events for up to two days,47,48 which would suggest 
that administration of BChE could be a useful therapy to 
treat patients dependent on cocaine.

In animal models, daily administration of cocaine for 
seven days (20 mg/kg ip.), to BChE knockout mice which ex-
pressed low or no activity in catalyzing it, quickly caused 
cardiomyopathy, respiratory depression (for approximately 

Figure 2. Flow diagram of the study’s selection process.
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12 hours), abnormal breathing patterns (apneusis), and at a 
histological level, significant liver toxicity and cardiac peri-
vascular fibrosis.48 Conversely, mice with normal expression 
of BChE recovered respiratory rhythm to normal levels 30 
minutes after dosing and showed neither apneusis or liver 
toxicity.49-51

The development of a double-mutant mouse has recent-
ly been reported, which showed a nil expression of carbox-
yl-esterase and BChE. When a lethal dose of cocaine was ad-
ministered (100 mg/kg), the double knockout mice showed 
an increase in the duration of toxic signs (hypothermia, 
hyperactivity, stereotyped behaviors, ocular effects, and tail 
dorsiflexion) that was 2.5 times the duration showed by the 
naive BChE mouse.50

Various assessments have reported that administration 
of BChE (15,000 or 5,000 IU, iv.) derived from horse serum, 
reduced the half-life of cocaine by 26.2 minutes to 16.4 min-
utes in the plasma of rodents, cats, and primates.26,52,53 Fur-
thermore, in vitro, rodent, primate, and human BChE also 
increased the metabolism of cocaine.54-56

In terms of cocaine levels in the brain, administration 
of BChE 7.8 mg/kg, iv.) to rats reduced the concentration 
of cocaine to 80% in four minutes, 30% at 45 minutes, and 
24% at 52 minutes after the administration of cocaine (30 
mg/kg, ip.).26,57-59

It has been reported that intravenous administration to 
rats of 5,000 IU of BChE derived from horse serum, followed 
by intraperitoneal administration of 17 mg/kg of cocaine 
produced a significant attenuation in the locomotive activity 
induced by its administration, in sessions of 120 minutes.56,60 
It also temporarily reduced re-establishment of self-admin-
istration.61-64

In rodents and primates, acute toxicity induced by co-
caine overdose was marked by an increase in blood pres-
sure, a reduction in cardiac rhythm, hypertension, bradycar-
dia, respiratory suppression, and tonic-clonic convulsions, 
the latter being associated with epileptic crises. These are 
the primary mechanisms responsible for fatality induced by 
cocaine overdose.65-67

In rats, the administration of a 7.8 mg/kg, iv. dose of 
BChE increased plasmatic levels of the enzyme by more 
than 800 times the normal level, which avoided hyperten-
sion and cardiac arrhythmias caused by cocaine overdose 
(Lynch 1997). Higher doses in mice (13.7 or 27.4 mg/kg) 
reduced the incidence of convulsive crises and death pro-
duced by doses of up to 80 mg/kg, ip.68

However, despite its strategic availability in circu-
lation, the catalytic efficiency of human BChE is very low 
and depends on many factors. In situations of acute expo-
sure to toxic concentrations of cocaine, BChE is easily over-
whelmed.69,70

With the aim of increasing the catalytic capacity of hu-
man BChE, various research groups carried out successive 
mutations to hBChE.71-73 Upon introducing a simple muta-

tion, alanine 328-tyrosine, to transfective ovarian hamster 
cells, some research groups managed to increase the speed 
of hydrolysis of cocaine by a factor of 4.74 If the mutation 
was tyrosine 332-alanine, the reaction speed increased 40 
times. In rats, administration of the mutant BChE blocked 
convulsive crises and fatality induced by cocaine overdose 
(100 mg/kg, ip).75

Cocaine hydrolase

Later studies with computerized molecular design and ge-
netic engineering76-80 generated various enzymes capable 
of hydrolyzing cocaine from human BChE, and these were 
called cocaine hydrolases (hCocE). A double mutant called 
“hCocH” was then designed, as well as a quadruple mutant, 
“AME-359”,81,82 and recently, a hBChE with five simultane-
ous mutations, called “hCocH2”.83

In vitro, the “hCocE” hydrolase (A328W/Y332A-BChE) 
was capable of increasing catalytic efficiency showed by 
BChE by 1,500 times.84-86 However, despite the increase in 
the efficiency of cocaine hydrolysis, the enzyme was not ca-
pable of hydrolyzing acetylcholine.

When hCocE (3 mg/kg iv.) was administered to rats, it 
was capable of quickly removing cocaine from blood ves-
sels, reducing the half-life of the drug from 52 to 18 min-
utes, reducing the concentration of cocaine in plasma, and 
thereby reducing its accumulation in the CNS, and it also 
increased plasmatic levels of benzoic acid, a non-toxic prod-
uct of cocaine hydrolysis.87,88

In vivo, hCocE reduced locomotive activity and attenu-
ated the cardiovascular response (blood pressure) induced 
by the drug.89-93

In studies on cocaine overdose in rats, hCocE has shown 
better catalytic efficiency and selectivity compared to hB-
ChE. hCocE efficiently blocked the cardiovascular and neu-
rological effects induced by lethal doses (180 mg/kg ip.) in 
rats and primates.65 Furthermore, 1 mg/kg of hCocE protect-
ed 100% of the animals which received toxic doses of cocaine 
(180 mg/kg), whereas administration of 13 mg of BChE 
failed to protect rats from fatality caused by similar doses. 
hCocE given to rats after the appearance of convulsive crises 
did not only shorten the duration of these, but also saved the 
subject from death.94

However, despite these results, a significant disadvan-
tage of hCocE is that it has a very short half-life (< 10 min-
utes) in plasma, which does not allow it to have a long-term 
protective action.

Bacterial cocaine esterase

The bacteria rhodococcus sp., MB1, is capable of producing 
an esterase, bCocE, which can hydrolyze cocaine both in vi-
tro and in vivo.95 The enzymatic action of this esterase man-
aged to increase up to 1000 times more compared to that 
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shown by human hBChE, which is 105-106 times faster than 
a monoclonal antibody.96

Administration of bCocE attenuated the re-estab-
lishment of drug-seeking behavior in animals previously 
trained to self-administer cocaine, and it blocked the in-
crease in locomotive activity induced by the same.97

Furthermore, bCocE at doses of 28 mg/kg quickly re-
stored blood pressure (three minutes) and hypertension, re-
duced cardiac arrhythmia, and reduced toxicity induced by 
overdose (100 mg/kg, 1p.), preventing death by convulsive 
crises in both rats and mice.98

However, despite their efficiency, mammalian en-
zymes are more effective in vivo than bacterial ones. Bacte-
rial cocaine esterase injected into rats had a half-life of only 
15 minutes compared with eight hours for human CocH-al-
bumin.66

There are many factors that intervene in the length of 
bCocE’s half-life, but the most relevant are the immune re-
sponse generated by the host against the enzyme, and tem-
perature. Brim et al. reported that process of eliminating 
bacterial bCocE was dependent on temperature (thermola-
bile). bCocE has a mean half-life of just 11 minutes at 37°C.99

Ko et al. demonstrated that despite bCocE being a very 
large bacterial protein, due to which it is likely to be able to 
generate a potent immune response, it withholds its effec-
tiveness after one or more exposures, which suggests that 
CocE is a weak antigen, not capable of generating a robust 
immune response.100 This would suggest that human endog-
enous temperature is the main obstacle to its use as an effec-
tive therapeutic agent.

Mutant esterases

Given that bacterial esterase is unstable at physiological 
temperatures, various research groups carried out a series of 
mutations aimed at improving the protein’s stability at dif-
ferent temperatures. These mutants, called T172R, G173Q, 
and L196K, showed significant stability in vitro at 37°C. 
When assessed in vivo, the mutant T172R showed a half-life 
of 78 minutes, while the mutants G173Q and L196K had a 
half-life at 37°C of 75 and 403 minutes respectively. In terms 
of hydrolytic activity, the mutant G173Q did not show any 
alteration in its catalytic activity; whereas the mutant T172R 
and the double mutant T172R-G173Q showed an increase of 
three times in their capability to hydrolyze cocaine. Further-
more, the mutant L196K showed an increase of eight times 
in its catalytic efficiency.101,102

In parallel, Gao et al. aimed to increase the hydrolytic 
activity of BChE, and generated a mutant called AME-359.103 
This enzyme showed an impressive capacity to hydrolyze 
cocaine in plasma.104,105 Its catalytic efficiency increased 100 
times more than the catalytic activity shown by native hu-
man BChE, and it was 450 times higher than that reported 
for CocE and bCocE.66,98

When AME-359 was administered in doses of 0.5 mg/kg, 
it reduced cardiovascular toxicity induced by a cocaine over-
dose more efficiently compared to treatment with 3 mg/kg of 
CocE.106

The production of mutants of human BChE in transgen-
ic plants (Nicotinia benthamiana) has recently been described. 
The first mutant developed using this approach was a dou-
ble mutant of BChE, A328W/Y332A. This showed a signifi-
cant increase in hydrolytic activity against cocaine.107

The catalytic properties of this mutant (called variant 1) 
were subsequently improved by introducing additional mu-
tants in different parts of human BHcE in order to create the 
so-called: variant 2 (F227A/S287G/A328W/Y332A), variant 
3 (A199S/S287G/A328W/Y332G), 4 (A199S/F227A/S287G/
A328W/Y332G) and 5 (F227A/S287G/A328W/Y332G). Vari-
ant 4 of human BChE was the most efficient at hydrolyzing 
cocaine.107,108

Hou et al. recently assessed the catalytic capacity of two 
mutants of human BChE, E14-3 and E12-7, to hydrolyze co-
caethylene, a toxic product of cocaine. In vitro, enzyme E12-7 
improved the catalytic efficiency of human BChE up to 817 
times; in vivo, E12-7 was capable of efficiently hydrolyzing 
cocaethylene, cocaine, and norcocaine in rats.109

Gene therapy

Other research groups developed and validated other ge-
nomic transfer protocols, where the human CocH gene was 
transferred to a host, by means of an adenoviral vector, with 
the aim of generating high and sustained plasma levels of 
cocaine hydrolase. In order to do this, the DNAc of human 
CocE was incorporated into a type 5 adenoviral vector with 
a cytomegalovirus promoter (hdAD),110 which could trans-
fer the gene of the human CocE into rats for some days or 
weeks, generating notable and sustained quantities of the 
hydrolase in the liver,111 and increasing the catalytic efficien-
cy of the transferred protein, hdAD-CocH, compared to rat 
BChE, by up to 50,000 times.106

Other studies reported that administration of high dos-
es of the vector raised the catalytic activity of CocH by up to 
1 000 000 times with no apparent secondary reactions.112-114 
In fact, Murthy et al. reported that hdAD-mCocH vector 
transfer therapy did not cause adverse secondary effects on 
the functioning of the cholinergic system; subjects showed 
unchanged cognitive and motor functions.115

Administration of the hdAD-CocH vector (3mg/kg) to 
rats or mice reduced the half-life of cocaine and attenuated 
the cardiovascular effects caused by different doses.111 Fur-
thermore, it dramatically reduced the re-establishment of 
drug-seeking in the self-administration model (0.4 mg/kg) 
for up to six months,111 however it did not alter water or 
food ingestion behaviors, or modify self-administration of 
amphetamines (0.05 mg/kg), nor did it reduce locomotive 
activity.116
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This suggests that the hdAD-mCocH vector did not al-
ter motor efficiency or motivation related to drug-seeking; 
rather, its effect was specific to the reinforcement produced 
by cocaine.64

The transfer of the mutant of human CocH AME359 
to rats through the hdAD-hCocH vector was recently re-
ported. Administration of this vector in rats reduced the 
concentration of cocaine in plasma, prevented locomotive 
activity induced by cocaine, prevented the re-establishment 
of drug-seeking behavior for up to six months, and reduced 
fatality after an overdose (120 mg/kg).114

Other studies have reported the transfer of bacterial 
CocH through the use of bacteriophages. These are viruses 
that have the capacity to enter the bloodstream and easily 
cross the blood-brain barrier; they can tolerate a variety of 
adverse conditions such as extreme pH and treatment with 
nucleases and proteolytic enzymes.117 Bacteriophages are 
therefore a good means by which to transfer exogenous mol-
ecules to the central nervous system such as CocH, which 
due to their size, the host’s immune or enzymatic system 
may quickly return to circulation.

Howell et al. reported that transferring bacterial CocH 
through a bacteriophage to Rhesus Macques eliminated co-
caine in the brain three times faster than systemic admin-
istration. This means of administration attenuated the rein-
forcing effects of cocaine118 and avoided increases in blood 
pressure and cardiac frequency after administering an over-
dose.105

Rogers et al. achieved the expression of human CocE 
using protein III (pIII) and protein IX (pIX) within a bacte-
riophage. Both preparations, CocE-pIII and –pIX, were re-
producible and generated high catalytic activity.15

Murthy et al. recently managed to transfer a mutated 
BChE to mice. The transfer through a viral vector raised 
the enzyme levels 1,000 times compared to normal levels, 
and increased the enzyme’s catalytic capacity for months, 
capable of eliminating cocaine in a matter of seconds after 
its appearance in the bloodstream. Furthermore, the mutat-
ed BChE was capable of attenuating place preference and 
reducing blood pressure and fatality induced by overdose 
(80 mg/kg).119

Dual therapy

One of the main effects of administering cocaine overdoses 
(100-120 mg/kg, ip.) is permanent damage to the liver and 
muscles.112 Individual therapies such as administration of 
human CocE (0.3 or 1 mg/Kg) or of monoclonal antibodies 
(10 or 20 mg/kg), or immunization with an immunogenic 
conjugate capable of producing antibodies against cocaine, 
have not yet been able to avoid these alterations. It has re-
cently been reported that treatment with a combination 
of these therapeutic agents (enzyme, 1mg/kg-antibody, 
8mg/kg, enzyme, 1 mg/kg-100 μg KLH-Norcocaine) pro-

vided complete protection to the liver and muscles.112,113 It 
also completely blocked locomotive stimulation caused by 
10mg/kg of cocaine,21 which suggests that the combination 
of different therapies could increase protection against the 
psychostimulant actions of cocaine and extend its use into 
humans as support therapies for maintaining abstinence.120

DISCUSSION AND CONCLUSION

As mentioned previously, there has been a lack of an ef-
fective pharmacological therapy to date against the effects 
caused by cocaine,1,2 especially in situations of intoxication 
by overdose. One therapeutic option is the use and valida-
tion of new alternative therapies.3,4

Taking overdoses proves fatal for a high percentage of 
cocaine addicts, as they cause cardiovascular and cerebral 
alterations, convulsions, and/or death. As such, based on 
the urgent need for an alternative therapeutic strategy, val-
idation of the use of enzymes (BChE, CoCH, and bacterial 
CoCe) capable of significantly reducing dosage levels (even 
of lethal levels of cocaine) both in the bloodstream and the 
brain,9,10 will provide emergency services with a unique 
therapeutic tool which will allow them to effectively reduce 
the lethal effects of overdose.121 As well as its use in over-
dose situations, studies in animals allow the extension of 
these enzymes into potential therapeutic use in humans in 
order to quickly deactivate cocaine and develop treatments 
to avoid relapses and maintain abstinence.122,123

Phase I clinical studies have shown that the transfer of 
pure or recombinant (TV-138) human BChE into healthy 
subjects was a well-tolerated and safe therapy.124 Treatment 
with different doses (50, 100, and 300mg) of BChE-TV-138 
facilitated abstinence in patients dependent on cocaine, re-
duced its use, and attenuated subjective reinforcing effects 
caused by the drug.125,126

Although these studies would suggest that a therapy 
based on the use of human BChE is safe and could be useful 
in maintaining abstinence in dependent subjects, as is the 
case with other therapies such as active or passive vaccina-
tion, this therapy also has certain limitations: 1) its efficien-
cy depends on the enzyme remaining in the bloodstream, 
2) it is a therapy that can only temporarily avoid the drug 
crossing the blood-brain barrier, not for prolonged periods 
of time, 3) its use is therefore restricted to certain popula-
tions of subjects, particularly those who are in situations of 
intoxication by overdose.

In this sense, future studies need to assess the effective-
ness and biological safety of using such a therapy, together 
with pharmacological, immuno-pharmacological, or psy-
chological therapies.

This bibliographic review also has certain limitations: 
a) the bibliographical search did not widen to other search 
engines such as Biological abstracts, Google Scholar, Live 
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Search Academic, etc., b) truncation was not carried out on 
the descriptors used, c) no review was carried out of the bib-
liographical references of the articles included in the review, 
and d) the number of works aimed at describing the use of 
this therapeutic strategy in humans in cocaine overdose sit-
uations is small. All of these factors limit the conclusions 
drawn here.

These studies suggest that an increase in the catalytic 
activity of the enzymes BChE and hCE could be a useful 
strategy to develop an alternative therapy to treat patients 
in conditions of cocaine overdose toxicity.
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